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Flow sensitive MRI Techniques 
It is difficult to discuss flow measurements in MRI without recognizing that magnetic 
resonance has a generality experienced in no other imaging modality.  Signals arise 
from the magnetic moments which are totally controlled by three types of magnetic fields 
(the main, constant field, rapidly changing gradients in the main field, and radio 
frequency magnetic fields), which, in turn are totally under electronic and computer 
control.  The effect of flow on the MR signal depends directly on the selected magnetic 
fields.  For this reason, there is huge variability in the mechanisms that might be used for 
measuring flow.  
 
It is also very difficult to cover the concepts of the use of MRI in flow measurements 
because there have been so many contributions to this field over the course of the last 
20 years.  In general, the first publication on a technique was based upon the accepted 
imaging methods of that period, and as technology has improved, the flow measurement 
methods have improved, and innovations have been discovered to improve 
measurement efficiency. 
 
In the following we attempt to review the history of the development of flow 
measurement techniques, referring to as many of the fundamental contributions as we 
can find. 

Brief History 
The study of flow and its effects upon the MR signal began soon after the development 
of NMR itself, but proceeded at a very slow pace.  The work most often sited in reviews 
as the earliest dealing with flow is that of Suryan, which was published in 1951.(1)  Long 
before the development of MR imaging techniques, Suryan observed an increase in the 
signal from spins flowing in a tube into the signal detection region as the flow velocity 
was increased.  He attributed the signal increase to the inflow of unsaturated spins into 
the region of excitation and detection.  As early as 1959, J. R. Singer at the University of 
California, Berkeley, proposed and demonstrated that NMR could be used as a non-
invasive tool to measure in vivo blood flow. (2)  After earlier work by Singer with in vivo 
studies in mouse tails, the first human in vivo study was demonstrated by Morse and 
Singer.(3)  This study was a rudimentary time-of-flight (TOF) effect, flipping the 
magnetization in the blood with a 180-degree pulse from a transmitter coil placed 
upstream of the receiver. In a later study, Grover and Singer exploited the effect of flow 
upon the phase of signal from the moving spins to extract velocity distributions.(4)   
 
Hann demonstrated the dependence of the NMR precession phase angle on flow in the 
direction of a magnetic field gradient. (5)  The phase effect of flow upon the signal was 
earlier derived by Stejskal in his work on diffusion and flow.(6) 
 



After Singer published several experiments demonstrating that flow could be measured 
by signal changes in nuclear magnetic resonance, NMR flow meters were developed 
based upon the principles of the velocity dependence of signal washout.(7-9) 
 
Very shortly after Paul Lauterbur and then Peter Mansfield published their papers 
demonstrating that Magnetic field gradients could be used in their MR imaging 
techniques,(10,11) Garroway was able to use magnetic field gradients to demonstrate 
spatial distributions of velocity profiles.(12) 
 
In the years that followed 
these early pioneering studies, 
studies of blood vessel 
imaging and flow 
measurement techniques have 
grown steadily as indicated by 
the graph in Figure 1.  Again 
because of the huge number 
of contributors and 
contributions, it is difficult to 
always determine which were 
the primary publications to aid 
in the maturing of this field.   
 
MRA has been important in 
both the imaging of blood 
vessels and in the 
determination of blood flow.  
The signal in MRI arises from magnetic moments that are rotating in the transverse 
plane.   
 
At the risk of oversimplification, we divide the flow imaging and measurement techniques 
into those in which flow changes the amplitude and those that change the phase of the 
rotating transverse magnetization.  Because the amplitude techniques general rely on 
the time required for the magnetization to flow into the region being imaged, they are 
referred to as time-of-flight (TOF) techniques.   Phase techniques can and have been 
used for both vessel visualization and quantitative flow measurement.  In general, the 
inflow and saturation methods with and without injection of a T1 shortening contrast 
agent, have been most successful in 3D imaging of vessel anatomy while the phase 
techniques have been most successful for quantitative flow measurement. 

Amplitude Techniques – Time-of-Flight (TOF) 
 
The amplitude techniques can be further subdivided into a variety of methods.  We will 
first discuss those in which the distance that the magnetization has moved is evident 
from the images.  We will then discuss those in which the amplitude of the signal 
depends on velocity and the imaging technique factors. 
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Figure 1:  MRA publications from Pubmed 



Movement techniques. 
Movement techniques are those were the magnetization is tagged in some way and then 
flows to give a signal that is unique and detected to be different than the signal of 
stationary spins.   
 
Several different groups have studied techniques to image the distance that blood 
moves.  In the simplest form, and the magnetization within a narrow slab is saturated 
and after a small time interval, a slice through (perpendicular to) the slab is imaged.  Any 
signal generated from within the saturated band is then due to blood motion and the 
velocity of blood can be measured by the distance of the motion.(13-15)   
 
A similar technique designed to measure blood flow across the lumen of a vessel was 
developed by Saloner et al. in which the magnetization entering the region is rapidly 
tagged by excitations in alternate directions.(16,17) This technique produces a steady-
state spatial distribution of magnetization, and hence a signal, which reflects both the 
time at which magnetization enters the selected slice and how long the magnetization 
remains in the slice. In this way, a single image can be used to extract information on the 
velocities of interest.   
 
In general these “bolus tracking” techniques provide a simple method to obtain 
quantitative measurements of blood flow in localized regions.(18)   
 
Adiabatic fast passage has been used to tag spins external to the imaged volume, 
allowing direct assessment of in-plane and oblique directional flow velocities, and 
visualization of flow velocity profiles.(19,20) 

Amplitude effects: 
The time of flight approach to imaging of flow involves the labeling of flowing 
magnetization prior to its entry into the imaging region of interest (ROI).  The labeled 
volume of flowing magnetization can be referred to as a bolus.  The labeling of the 
flowing magnetization can be done with or without RF excitation of the magnetization 
external to the imaging region (ROI) and a corresponding excitation within the ROI.  The 
RF excitations and image acquisitions may be carefully timed to provide average velocity 
information as in Morse and Singer’s one dimensional flow experiment.(3) 
 
Prior to image acquisition, the magnetization within the imaged region can be saturated 
by a localized RF excitation.  During the subsequent image acquisition, regions of flow 
bringing unsaturated magnetization into the region will appear bright in the image.  
Conversely, saturation RF excitations of the magnetization outside of the imaged region 
can make the flow appear dark in the image.  Thus there are bright or “white-blood” 
techniques and dark or “black-blood” techniques. 
 
In spin echo sequences, for flow threw a slice, motion of the blood may cause some of 
the blood to not experience both the excitation (90o) and refocusing (180o) RF pulses.  
The signal intensity of flowing blood decreases linearly with velocity allowing quantitative 
measurements of high flow rates.(21)  
 
 
Singer and Crooks describe a whilte-blood technique in a paper on blood flow 
measurements in the human brain.(22)  Here the stationary magnetization within a 



selected slice is depolarized by a 90-degree RF excitation followed by the application of 
strong gradients.  Another 90-degree RF excitation is applied at a later time to tip the 
magnetization that entered the slice due to flow.  Imaging is then performed using a spin 
echo acquisition.  The timing of the 2nd 90-degree pulse and the resulting image pixel 
magnitude provides a measure of flow velocity.  Flow rates can then be derived using 
the velocity measurement and vessel areas extracted from the image. 
 
As magnetic homogeneity improved to the point that gradient recalled imaging could be 
performed, this method was refined to be much faster by using gradient recalled imaging 
instead of spin echo techniques.  Again, flow through the slice of a spin-echo technique 
causes variations in the intensity.  These variations in intensity can be directly related to 
the flow velocity, and allow determination of flow velocities through the slice.(23) 
 
Hennig demonstrated that flow velocities could be measured by varying inflow times into 
a slice that is experiencing simultaneous steady state saturation.(24),  
Inflow enhancement. (25) 
 
The use of stimulated echoes to create projection excited flow profiles that can be 
imaged with projection techniques, providing angiogram-like images where the extent of 
motion measures flow velocity.(26) 

Phase Techniques 
Again at the risk of oversimplification, we divide phase techniques into Fourier encoding 
where the full velocity distribution within a voxel is measured and phase contrast 
techniques where a single (average) velocity is measured. 

Full Fourier encoding of flow and position. 
Depending on the spatial resolution and the geometry of the flowing fluid, there may be a 
spectrum of velocities within the volume of a single image volume element (voxel).  Paul 
R. Moran published one of the first papers describing the use of stepped bipolar gradient 
pulses to phase encode flow velocities).(27)  The bipolar pulses cause a phase shift 
which is directly proportional to the flow velocity.  By stepping the bipolar pulses and 
then applying a Fourier transformation, the spectrum of velocities in the direction of the 
bipolar gradient is obtained.  Moran demonstrated that in principle it is possible to 
general the density of magnetic moments as a function of the 6 dimensional space of 
position and velocity.  Although such imaging can be prohibitively long, simplifications 
are possible and flow distribution measurements were demonstrated by Moran et al.(28) 
 
One such simplification was proposed by Feinberg et al. in a spin echo technique where 
a slice selective gradient is used to localize spins in the “z” direction, a readout gradient 
is used to obtain position in the “x” direction, and bipolar velocity phase encoding is used 
to obtain the velocity spectrum in the “y” direction (in fact this could have been any 
selected direction).(29)  In this manner projections of the flow density function in the “y” 
direction are obtained.  This paper also demonstrated that a 2nd spin echo could be 
acquired where the flow phase encoding for the first direction is “rewound” and flow 
phase encoding is applied in a 2nd “z” direction.  Later, Feinberg and Mark(30) applied 
this spin echo velocity spectroscopy technique, with velocity resolution of 0.4 mm/s to 
measure the very low velocity distributions of CSF and the small motions of the brain. 
They achieved localization along a line (shaft) by applying inner volume excitation(31) 
where the excitation slice selection gradient along the “y” direction, the 180o slice 



selection along the “z” direction and readout in the “x” direction.  Velocity encoding was 
then applied in the expected flow direction.   This technique was also used to measure 
flow distributions in tissue, providing information relative to tissue perfusion.(32)  A 
similar technique using cylindrical excitation was presented by Dumoulin et al.(33) 
 
This projection flow spectroscopy technique was improved by Hennig et al. by 
incorporating techniques to suppress the signal from stationary spins.(34,35)  They also 
demonstrated that the spatial locations of the flowing signals in the projection direction 
could be determined by reference to blood vessel positions in conventional bright blood 
“FLASH” (fast low-angle shot) or rapid gradient refocused techniques. 
 
With the development of thin slab angiography techniques,(36) Ping Hou et al. 
demonstrated a double echo spoil gradient echo technique where the slice encoding 
gradient for the first echo image is unwound for the 2nd echo image. (37) The result is 
Fourier velocity encoding for that thin slab.  .  This technique was used to measure flow 
distributions in dializers.(38) 
 
In order to improve the efficiency of Fourier flow methods, Dumoulin et al. introduced a 
technique that uses a comb excitation RF pulse to simultaneously acquires Fourier 
velocity encoded data from multiple slices.(39) As the Fourier velocity phase encoding 
gradient pulse is advanced, the phase of each slice in the comb is advanced by a unique 
amount, causing the signals from the magnetization in a particular slice to appear at a 
position in the phase encoding direction, which is the sum of the spin velocity and an 
offset arising from the phase increment given to that excitation slice. Velocity information 
is acquired simultaneously for all slices. 
 
In general Fourier velocity techniques are very slow.  In order to reduce the required 
acquisition time, Bittouin et al. demonstrated that the precision in flow measurements 
could be retained when only a few Fourier velocity encodings were performed.(40)  Zero 
filled interpolation was used to regain fine velocity steps.  Using tripolar gradient lobes, 
Tasu et al. were able to demonstrate Fourier acceleration images.(41) 

Phase Difference due to flow 
The reduced Fourier velocity encoding technique of Bittouin described just above, works 
well if there is only a narrow distribution of flow velocities within any single voxel.  When 
the flow velocity is relatively constant throughout an image voxel, the result of the 
Fourier transform in Fourier velocity imaging techniques is a spike or delta function at 
the specific velocity.  In this case, a single measurement of velocity dependent phase 
might be sufficient to determine the flow velocity.  Wedeen et al. demonstrated that 
images obtained using conventional MRI pulse sequences often contain substantial 
amounts of velocity dependent phase information.(42)   
 
One of the earliest techniques for flow measurement based upon velocity dependent 
phase encoding was presented by Bryant et al. (43)  In this technique, two flow encoding 
gradient pulses in the direction perpendicular to the imaged slice, separated by a non-
selective 180o RF pulse were used to encode velocity in the phase of the resulting 
image.  In a similar technique it was shown possible to measure velocities as small as 
10μ/s.(44) 
 



These early techniques for velocity measurement based upon bipolar flow encoding 
gradients were based upon the assumption that the resulting phase was only due to the 
velocity.  Unfortunately, image phase is also affected by a variety of other factors 
including pulse sequence timing, Bo (static field) inhomogeneity, B1 (excitation RF field) 
phase effects, magnetic field eddy currents, and other types of motions.(45)   The effects 
of background phase errors can be eliminated by using two different bipolar gradients 
and measuring the difference in the phase between the two measurements.  In addition 
to the Fourier velocity imaging techniques which are natural examples of multiple bipolar 
gradients,(27,29) techniques based upon phase differences between two gradient pairs 
have been presented.(46-49)   It was found that if the differences in the phase encodings 
are small, very high velocities can be recorded.(50)   
 
If 2 bipolar pairs are necessary to encode a single velocity component, then 6 
measurements could be required for measurement of the full 3 directions of flow.  
Hausman et al. (51) demonstrated that 3D directions of velocity components can be 
obtained with 4 measurements, consisting of 3 directions of velocity encoding and one 
zero.  The early strategies for doing 3 direction flow velocity measurements are reviewed 
by Pelc et al. and a balanced 4 point method is presented that gives the lowest velocity 
variance per unit time and is more efficient than the corresponding 6 point method.(45)   
 
Firmin et al. and Guilfoyle et al. both demonstrated that phase contrast flow encoding 
could be applied in single shot echo planar imaging (EPI) techniques to obtain very rapid 
flow velocity measurements.(52,53) 
 
Reviews of the issues of accuracy in phase contrast and the other flow measurement 
techniques have been made.(54,55)  In general phase contrast techniques provide a 
reasonable estimate of average flow velocity for unidirectional flow.  Substantial errors 
can occur for bi-directional flow distributions.(56) 
 
Finally, Dumoulin et al. presented a clever technique that used Fourier flow encoding for 
one motion component and phase contrast for a 2nd.(57)  The second could be a 
different flow direction or acceleration. 

Sources of Image artifacts and methods for artifact reduction. 
Turbulent flow effects – signal loss due to intravoxel velocity dispersion.  Non-constant, 
disordered, and turbulent flows can cause signal loss(58) which can in turn be related to 
the nature of the flow.(59,60) 
 
Oblique flow artifacts – caused by the timing differences between phase 
encoding/velocity encoding and signal readout.(61)  This artifact can be correct by 
gradient moment nulling.(62)  Xiang and Nalcioglu demonstrated that motion dependent 
pixel shifts could be used to measure flow. (63) 
 
Image noise is always a problem, and different techniques can be used to attempt to 
reduce this noise on the phase velocity measurements.  One in particular is spatial 
regularization which imposes a spatial similarity constraint on the resulting phase 
images.(64) 



Sources of error in phase contrast measurements 
There are many potential error sources and solutions.  Potential errors include errors 
due to velocity aliasing, partial volume effects, signal loss, and image distortions due to 
the phase/frequency artifact. 
 
Partial volume effects, where voxels contain both flowing fluid and stationary 
tissue.(65,66) 
 
Velocity aliasing which occurs if the bipolar gradients are too large.  Because velocity 
signal to noise ratio is inversely related to the velocity encoding gradient strength, it is 
advantageous to use the lowest possible encoding velocity.  To avoid aliasing, 3 
encoding velocities can be used. (67,68) 
 
Signal loss due to long echo times, and pulsatile motion may be reduced by the 
incorporation of 3D radial trajectories, such as the cine phase contrast VIPR technique 
of Madison.(69) 

Methods of image segmentation for flow measurement. 
Quantitative flow requires integration of measurements over the dimensions of blood 
vessels.  Segmentation of the vascular boundary can help to minimize flow errors.(70) 

Potential applications of quantitative flow measurements. 
There are many applications of flow measurements.  The following are just minuscule 
example of the hundreds of published papers.  Hundreds of clinical examples can be 
found in the literature, such as CSF flow measurements from velocity dependent phase 
images to name just one.  (71)  Of special note is the potential for making 
measurements that relate to vascular disease. 
 
In measurements made of velocity profiles across the aorta above and below the renal 
arteries, Oshinski et al. were able to observe a lower wall shear stress in the infrarenal 
areas where atherosclerosis is likely to form, supporting the hypothesis that low WSS is 
a localizing factor for atherosclerosis, and high WSS may act as a deterrent against 
formation of atherosclerosis.(72) 
 
Phase contrast velocity measurements combined with an analysis of pulse propagation 
has been used to estimate vascular compliance(73-77)  and to estimate pressure 
gradients from acceleration measurements.(78) 
 

Summary 
This represents an attempt to review the techniques that have been and might be used 
in the quantitative measurement of fluid flow.  In so doing we have reviewed the history 
of the measurements.  In fact, this history has been based upon the innovation of many 
bright and capable researchers operating with the constraints of the slowly evolving MRI 
technology.  Currently amplitude techniques are primarily used (without and with Gd. 
contrast agents) in the visualization of blood vessel anatomy.  Phase contrast 
techniques are used for velocity and flow measurements.  But the techniques continue to 
evolve rapidly and progress in flow, motion, and related measurement techniques can be 
expected to evolve extensively during the foreseeable future. 
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